常用的數量關系式
1、每份數×份數=總數 總數÷每份數=份數 總數÷份數=每份數
2、1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數 幾倍數÷倍數=1倍數
3、速度×時間=路程 路程÷速度=時間 路程÷時間=速度
4、單價×數量=總價 總價÷單價=數量 總價÷數量=單價
5、 工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間 工作總量÷工作時間=工作效率
6、加數+加數=和 和-一個加數=另一個加數
7、被減數-減數=差 被減數-差=減數 差+減數=被減數
8、因數×因數=積 積÷一個因數=另一個因數
9、被除數÷除數=商 被除數÷商=除數 商×除數=被除數
小學數學圖形公式
1、正方形(C:周長S:面積a:邊長)
周長=邊長×4 C=4a
面積=邊長×邊長 S=a×a
2、長方形(C:周長S:面積a:邊長)
周長=(長+寬)×2 C=2(a+b)
面積=長×寬 S=ab
3、三角形(s:面積a:底h:高)
面積=底×高÷2 s=ah÷2
三角形高=面積×2÷底 三角形底=面積×2÷高
4、總數÷總份數=平均數
5、和差問題的公式
(和+差)÷2=大數 (和-差)÷2=小數
6、和倍問題
和÷(倍數-1)=小數 小數×倍數=大數(或者和-小數=大數)
7、差倍問題
差÷(倍數-1)=小數 小數×倍數=大數(或小數+差=大數)
8、相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
常用單位換算
長度單位換算
1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米
面積單位換算
1平方千米=100公頃1公頃=10000平方米1平方米=100平方分米
1平方分米=100平方厘米1平方厘米=100平方毫米
重量單位換算
1噸=1000千克1千克=1000克1千克=1公斤
人民幣單位換算
1元=10角1角=10分1元=100分
時間單位換算
1世紀=100年1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月
平年2月28天,閏年2月29天平年全年365天,閏年全年366天1日=24小時
1時=60分1分=60秒1時=3600秒
基本概念
先進章數和數的運算
一概念
(一)整數
1、整數的意義
自然數和0都是整數。
2、自然數
我們在數物體的時候,用來表示物體個數的1,2,3……叫做自然數。
一個物體也沒有,用0表示。0也是自然數。
3、計數單位
一(個)、十、百、千、萬、十萬、百萬、千萬、億……都是計數單位。
每相鄰兩個計數單位之間的進率都是10。這樣的計數法叫做十進制計數法。
4、數位
計數單位按照一定的順序排列起來,它們所占的位置叫做數位。
5、數的整除
整數a除以整數b(b≠0),除得的商是整數而沒有余數,我們就說a能被b整除,或者說b能整除a。
如果數a能被數b(b≠0)整除,a就叫做b的倍數,b就叫做a的約數(或a的因數)。倍數和約數是相互依存的。
因為35能被7整除,所以35是7的倍數,7是35的約數。
一個數的約數的個數是有限的,其中較小的約數是1,較大的約數是它本身。例如:10的約數有1、2、5、10,其中較小的約數是1,較大的約數是10。
一個數的倍數的個數是無限的,其中較小的倍數是它本身。3的倍數有:3、6、9、12……其中較小的倍數是3,沒有較大的倍數。
個位上是0、2、4、6、8的數,都能被2整除,例如:202、480、304,都能被2整除。。
個位上是0或5的數,都能被5整除,例如:5、30、405都能被5整除。。
一個數的各位上的數的和能被3整除,這個數就能被3整除,例如:12、108、204都能被3整除。
一個數各位數上的和能被9整除,這個數就能被9整除。
能被3整除的數不一定能被9整除,但是能被9整除的數一定能被3整除。
一個數的末兩位數能被4(或25)整除,這個數就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
一個數的末三位數能被8(或125)整除,這個數就能被8(或125)整除。例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。
能被2整除的數叫做偶數。
不能被2整除的數叫做奇數。
0也是偶數。自然數按能否被2整除的特征可分為奇數和偶數。
幾個數公有的約數,叫做這幾個數的公約數。其中較大的一個,叫做這幾個數的較大公約數,例如12的約數有1、2、3、4、6、12;18的約數有1、2、3、6、9、18。其中,1、2、3、6是12和18的公約數,6是它們的較大公約數。
如果較小數是較大數的約數,那么較小數就是這兩個數的較大公約數。
幾個數公有的倍數,叫做這幾個數的公倍數,其中較小的一個,叫做這幾個數的較小公倍數,如2的倍數有2、4、6、8、10、12、14、16、18……
3的倍數有3、6、9、12、15、18……其中6、12、18……是2、3的公倍數,6是它們的較小公倍數。
如果較大數是較小數的倍數,那么較大數就是這兩個數的較小公倍數。
幾個數的公約數的個數是有限的,而幾個數的公倍數的個數是無限的。
二方法
(一)數的讀法和寫法
1.整數的讀法:從高位到低位,一級一級地讀。讀億級、萬級時,先按照個級的讀法去讀,再在后面加一個“億”或“萬”字。每一級末尾的0都不讀出來,其它數位連續(xù)有幾個0都只讀一個零。
2.整數的寫法:從高位到低位,一級一級地寫,哪一個數位上一個單位也沒有,就在那個數位上寫0。
(二)數的改寫
一個較大的多位數,為了讀寫方便,常常把它改寫成用“萬”或“億”作單位的數。有時還可以根據需要,省略這個數某一位后面的數,寫成近似數。
1.準確數:在實際生活中,為了計數的簡便,可以把一個較大的數改寫成以萬或億為單位的數。改寫后的數是原數的準確數。例如把1254300000改寫成以萬做單位的數是125430萬;改寫成以億做單位的數12.543億。
2.近似數:根據實際需要,我們還可以把一個較大的數,省略某一位后面的尾數,用一個近似數來表示。例如:1302490015省略億后面的尾數是13億。
3.四舍五入法:要省略的尾數的較高位上的數是4或者比4小,就把尾數去掉;如果尾數的較高位上的數是5或者比5大,就把尾數舍去,并向它的前一位進1。例如:省略345900萬后面的尾數約是35萬。省略4725097420億后面的尾數約是47億。
4.大小比較
比較整數大。罕容^整數的大小,位數多的那個數就大,如果位數相同,就看較高位,較高位上的數大,那個數就大;較高位上的數相同,就看下一位,哪一位上的數大那個數就大。
三性質和規(guī)律
(一)商不變的規(guī)律
商不變的規(guī)律:在除法里,被除數和除數同時擴大或者同時縮小相同的倍,商不變。
(五)分數與除法的關系
1.被除數÷除數=被除數/除數
2.因為零不能作除數,所以分數的分母不能為零。
3.被除數相當于分子,除數相當于分母。